A dyad is defined as any pair of nodes *(A, B)*. In a directed ne=
twork, a dyad is said to have a reciprocal relationship if there exists an =
edge from *A* to *B* and from *B* to *A*. The r=
eciprocity is the ratio of reciprocal relationships in the network to the t=
otal number of dyads with any kind of relationship (reciprocal or otherwise=
).

A dyad is defined as any = pair of actors (nodes) (A, B). In a directed network there are three possib= le kinds of dyads, no tie (link), one likes the other but not vice versa (A= B or BA exists, but not both), or both like the other (AB and BA exist). Th= e last one corresponds to a reciprocal relation and a reciprocated tie.

=20The prevalence of recipro= city is given by the ratio of number of dyads with a reciprocated tie to th= e total number of dyads with any tie.

=20Algorithm must be applied to directed networks. Self-loops are ignored i= n the calculation.

=20This is global calculation for the input network, and as such the result= s are simply reported on the Console window.

=20- =20
- Source Code: link =20

Hanneman, Robert A. and Mark Riddle. 2005. Introduction to social networ= k methods. Riverside, CA: University of California, Riverside.

=20http://faculty.ucr.edu/~hanneman/nettext/

= =20
The license could not be verified: License Certificate has expired!=20
Generate a Free license now.