Child pages
  • SLM Community Detection

Versions Compared


  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migrated to Confluence 5.3

The smart local moving (SLM)  community detection algorithm (Waltman & Van Eck, 20112013) is an algorithm for performing community detection (clustering) in networks by maximizing a modularity function. The SLM  algorithm can be used to detect communities in very large networks within short computing times. The SLM algorithm builds on ideas from the Louvain community detection algorithm proposed by Blondel et al. (2008), but it includes a number of enhancements of this algorithm. Because of these enhancements, the SLM algorithm generally yields higher modularity values, but it also requires more computing time.

Adjust the following parameters to optimize the algorithm (See the paper for more detail):


WeightAn integer attribute of the edge that will be used as weight parameter
Modularity FunctionThe Standard modularity function has been proposed by Newman and Girvan (2004) and Newman (2004). The Alternative modularity function has been proposed by Traag, Van Dooren, and Nesterov (2011)
ResolutionThe resolution parameter determines the granularity level at which communities are detected. Use a value above (below) 1.0 if you want to obtain a larger (smaller) number of communities.
Random StartNumber of random starts
IterationsNumber of iterations per random start
Random SeedSeed of the random number generator