Child pages
  • Barabási-Albert Scale-Free
Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 4 Next »


The Barabási-Albert (BA) model is an algorithm which generates a scale-free network by incorporating growth and preferential attachment. Starting with an initial network of a few nodes, a new node is added at each time step. Older nodes with a higher degree have a higher probability of attracting edges from new nodes. The probability of attachment is given by

The initial number of nodes in the network must be greater than two and each of these nodes must have at least one connection. The final structure of the network does not depend on the initial number of nodes in the network. The degree distribution of the generated network is a power law with a scaling coefficient of -3. The figure on the left shows the network and the figure on the right gives the probability distribution on a log-log scale.


  • No labels